External gills and adaptive embryo behavior facilitate synchronous development and hatching plasticity under respiratory constraint.

نویسندگان

  • Jessica R Rogge
  • Karen M Warkentin
چکیده

Plasticity in hatching timing allows embryos to balance egg- and larval-stage risks, and depends on the ability of hatching-competent embryos to continue developing in the egg. Hypoxia can slow development, kill embryos and induce premature hatching. For terrestrial eggs of red-eyed treefrogs, the embryonic period can extend approximately 50% longer than development to hatching competence, and development is synchronous across perivitelline oxygen levels (PO2) ranging from 0.5-16.5 kPa. Embryos maintain large external gills until hatching, then gills regress rapidly. We assessed the respiratory value of external gills using gill manipulations and closed-system respirometry. Embryos without external gills were oxygen limited in air and hatched at an external PO2 of 17 kPa, whereas embryos with gills regulated their metabolism and remained in the egg at substantially lower PO2. By contrast, tadpoles gained no respiratory benefit from external gills. We videotaped behavior and manipulated embryos to test if they position gills near the air-exposed portion of the egg surface, where PO2 is highest. Active embryos remained stationary for minutes in gills-at-surface positions. After manipulations and spontaneous movements that positioned gills in the O2-poor region of the egg, however, they returned their gills to the air-exposed surface within seconds. Even neural tube stage embryos, capable only of ciliary rotation, positioned their developing head in the region of highest PO2. Such behavior may be critical both to delay hatching after hatching competence and to obtain sufficient oxygen for normal, synchronous development at earlier stages.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Oxygen, gills, and embryo behavior: mechanisms of adaptive plasticity in hatching.

Many species alter the timing of hatching in response to egg or larval predators, pathogens, or physical risks. This plasticity depends on separation between the onset of hatching competence and physiological limits to embryonic development. I present a framework based on heterokairy to categorize developmental mechanisms and identify traits contributing to and limiting hatching plasticity, the...

متن کامل

Hatching timing, oxygen availability, and external gill regression in the tree frog, Agalychnis callidryas.

The physiological role of the embryonic external gills in anurans is equivocal. In some species, diffusion alone is clearly sufficient to supply oxygen throughout the embryonic period. In others, morphological elaboration and environmental regulation of the external gills suggest functional importance. Since oxygen stress is a common trigger of hatching, I examined the relationships among hatch...

متن کامل

Risk-induced hatching timing shows low heritability and evolves independently of spontaneous hatching in red-eyed treefrogs.

Plasticity in the timing of transitions between stages of complex life cycles allows organisms to adjust their growth and development to local environmental conditions. Genetic variation in such plasticity is common, but the evolution of context-dependent transition timing may be constrained by information reliability, lag-time and developmental constraints. We studied the genetic architecture ...

متن کامل

Maternal Vibration: An Important Cue for Embryo Hatching in a Subsocial Shield Bug

Hatching care has been reported for many taxonomic groups, from invertebrates to vertebrates. The sophisticated care that occurs around hatching time is expected to have an adaptive function supporting the feeble young. However, details of the characteristics of the adaptive function of hatching care remain unclear. This study investigated the hatching care of the subsocial shield bug, Parastra...

متن کامل

Embryonic communication in the nest: metabolic responses of reptilian embryos to developmental rates of siblings.

Incubation temperature affects developmental rates and defines many phenotypes and fitness characteristics of reptilian embryos. In turtles, eggs are deposited in layers within the nest, such that thermal gradients create independent developmental conditions for each egg. Despite differences in developmental rate, several studies have revealed unexpected synchronicity in hatching, however, the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 211 Pt 22  شماره 

صفحات  -

تاریخ انتشار 2008